Note: Answer all questions of Part - A and answer any five questions from Part-B.

PART – A (25 Marks)

1. If \(x(t) = \delta'(t+3) - 3\delta(t=3) + 4\delta(t+2) \) then sketch \(G(t) = \int_{-\infty}^{\infty} x(t) \, dt \).

2. If \(x(t) = \cos\left(\frac{\pi}{3} t\right) + \sin\left(\frac{\pi}{4} t\right) \) is \(x(t) \) periodic, if periodic, find the period of \(x(t) \).

3. Show clearly the S-plane and Z-plane corresponding.

4. Write the properties of convolution.

5. If \(x[n] = -a^n u[-n-1] \) find the Fourier transform of \(x[n] \).

6. Write the relation between exponential and trigonometric Fourier series coefficients.

7. What is the Fourier transform of unit step signal?

8. Find the Laplace transform of \(x(t) = e^{-at} u(-t) \).

9. Express the ramp sequence in terms of step sequence.

10. Clearly show that the unit step sequence is a power or energy signal.

PART – B (5x10=50 Marks)

11.(a) State and prove the Parseval's power theorem applicable to periodic signals.

(b) Prove that the half wave symmetric signal contains only odd harmonics in the Fourier series.

12.(a) If \(x(t) = 1 \) \(|t| < a \)

\(= 0 \) otherwise obtain the Fourier transform of \(x(t) \).

(b) If \(X(\omega) = \int \frac{e^{j\omega t}}{1 + j\omega^2} \) is the Fourier transform of a signal \(x(t) \), then find the signal \(x(t) \).

13. Consider a continuous time linear time invariant system for which the input \(x(t) \) and output \(y(t) \) are related by \(\frac{d^2 y(t)}{dt^2} + \frac{dy(t)}{dt} + 2y(t) = x(t) \).

(a) Find the system function

(b) Determine the impulse response for each of the following cases:

(i) the system is stable

(ii) the system is causal and stable
14. (a) Impulse response of the system $h[n]=a^n u[n]$, determine whether the system is causal and stable.
\[x[n]=\{1, 1, 1, 1\} \text{ and } h[n]=\{1, 1, 1\} \]
(b) Find the convolution of the following signal $x[n]$ and $h[n]$.
\[x[n]=\{1, 1, 1, 1\} \text{ and } h[n]=\{1, 1, 1\} \]

15. (a) State and prove the time reversal and time shifting properties of the z-transform.
(b) If $X(Z) = \frac{z(z-4)}{(z-1)(z-2)(z-3)}$ is the Z-transform of $x(n)$, state all possible ROC’s and for which ROC $X(z)$, the Z-transform of casual sequence $x[n]$.

16. (a) Determine the Fourier coefficient of $x[n]$ which is the periodic extension of the sequence $\{0, 1, 2, 3\}$ with fundamental period of $N_o=4$.
(b) Verify the frequency shifting property $e^{j\Omega_o} x[n] \leftrightarrow X[\Omega - \Omega_o]$.

17. (a) Write the Dirichlet conditions.
(b) Determine the 90% energy containment bandwidth of the signal $x(t) = \frac{1}{(t^4 + a^2)}$.
(c) Find the initial and final values of the signal $x(t)$ whose Laplace transform $\frac{10(s+4)}{(s+2)(s^2-2s+2)}$.